
 

A High-Level Distributed Execution Framework for Scientific Workflows 
 
 

Jianwu Wang1, Ilkay Altintas1, Chad Berkley2, Lucas Gilbert1, Matthew B. Jones2 

 
1 San Diego Supercomputer Center, UCSD, U.S.A. 

{jianwu, altintas, iktome}@sdsc.edu 
 

2 National Center for Ecological Analysis and Synthesis, UCSB, U.S.A. 
{berkley, jones}@nceas.ucsb.edu 

 
 

Abstract 
 

Domain scientists synthesize different data and 
computing resources to solve their scientific problems. 
Making use of distributed execution within scientific 
workflows is a growing and promising way to achieve 
better execution performance and efficiency. This 
paper presents a high-level distributed execution 
framework, which is designed based on the distributed 
execution requirements identified within the Kepler 
community. It also discusses mechanisms to make the 
presented distributed execution framework easy-to-use, 
comprehensive, adaptable, extensible and efficient.  
 
 
1. Introduction 
 

Scientific workflow management systems, e.g., 
Taverna [1], Triana [2], Pegasus [3], Kepler [4], 
ASKALON [7] and SWIFT [12], have demonstrated 
their ability to help domain scientists solve scientific 
problems by synthesizing different data and computing 
resources. Scientific workflows can operate at different 
levels of granularity, from low-level workflows that 
explicitly move data around, start and monitor remote 
jobs, etc. to high-level "conceptual workflows" that 
interlink complex, domain specific data analysis steps. 
Distributed execution and Grid workflows can be seen 
as a type of scientific workflows. Most workflow 
systems centralize execution [5], which often causes a 
performance bottleneck. We summarize requirements 
within the Kepler community and propose our 
distributed execution framework to take advantage of 
abundant distributed computing resources to achieve 
better execution performance and efficiency. Based on 
community feedback, our goals for the Kepler 
distributed execution framework include the ability to 
easily form ad-hoc networks of cooperating Kepler 

instances. Each cooperating Kepler network can 
impose access constraints and allows Kepler models or 
sub-models to be run on participating instances. Once a 
Kepler cooperating network has been created, it can 
configure one or more subcomponents of a workflow 
to be distributed across nodes of the newly constructed 
network. The major contribution of this paper is 
demonstrating a distributed scientific workflow 
approach that combines an intuitive user interface, 
collaborative features, and capabilities for distribution 
of workflow tasks and the workflows themselves in a 
single framework. 

In Section 2, we discuss the background of 
scientific workflow distributed execution. Sections 3 
and 4 describe the conceptual architecture and 
framework. We demonstrate a case study in Section 5 
to show how the framework works. Finally, we 
conclude and explain future work in Section 6. 
 
2. Background 
 

Our work is based on the following aspects: 
structure of scientific workflow specifications, typical 
distributed execution requirements as specified by 
scientists, and prior work in distributed execution. 

 
2.1. Scientific Workflow Specification 
Structure 
 

There are several different formats for representing 
scientific workflows [14, 15, 16], but they generally 
are graph descriptions that can be used to represent 
three types of components: tasks, data and control 
dependencies [5]. For example, in Figure 1 the tasks 
T2 and T3 will be executed under different conditions. 
Additionally, T4 needs to get data from either T2 or T3 
before its execution. Since our framework incorporates

Fourth IEEE International Conference on eScience

978-0-7695-3535-7/08 $25.00 © 2008 IEEE

DOI 10.1109/eScience.2008.166

634



 

  
Table 1. Requirements for distributed execution in the Kepler user community. 

Requirement Explanation Approach 
Execute Tasks 
on Remote 
Nodes 

Some tasks cannot be executed locally for the following reasons: 1) 
insufficient local computing cycles for desired task; 2) scientific codes in, 
e.g., C and Fortran, are not ported to run on the local computer; 3) third 
party software, e.g., Matlab, may not be installed on the local computer; 
4) the user does not have authority to run a third-party application. 

Distribute to other computers that 
can execute the required tasks. 

Distributed Node 
Discovery 

Users know they can benefit from distributed execution, yet they do not 
know where to find and choose proper distributed nodes. 

Automatic distributed node 
discovery and selection. 

Peer-to-Peer 
Data Transfer 

Centralized transfer of large datasets is one of the main bottlenecks for 
execution efficiency. 

Transfer data between source and 
destination nodes directly, or 
execute the task on the node 
containing the data.  

Provenance of 
Distributed 
Execution 
 

Provenance can help users to track execution information in the future 
[6], which should also be supported in distributed execution 
environments. 

Provide proper locations to store 
provenance information and ways 
to track it easily in distributed 
environments. 

Distributed 
Monitoring 

Users need to know the current execution status, e.g., which tasks are 
executing on which computers with which data. 

Support graphical monitoring and 
user interaction for more detailed 
information. 

Transparent 
Implementation 

Distributed execution should be usable with little or no knowledge of 
grid computing techniques. Most of the Kepler user community are 
unfamiliar with existing grid computing frameworks, e.g., Globus, and 
requiring knowledge of these types of systems effectively prevents 
adoption of distributed computing. 

Automatically choose proper 
implementation techniques 
according to real situations without 
user interaction with arcane 
configuration languages.  

Reuse Existing 
Workflows 

Workflows that can be executed centrally should be distributed with 
minimal changes to the workflow specifications. 

Decouple workflows’ execution 
from their specifications. 

Failure Recovery Monitor, diagnose and recover from failures during distributed execution.  Find failure reasons, re-allocate 
distributed nodes, and re-execute 
failed tasks. 

 
this basic workflow specification structure, it can be 
implemented for different scientific workflow engines. 

 
Figure 1. An example workflow composed of 

tasks and dependencies. 
 
2.2. Typical Requirements for Distributed 
Execution using Scientific Workflows 
 

The Kepler project aims to produce an open-source 
scientific workflow system that allows scientists to 
design and efficiently execute scientific workflows. 
Since 2003, Kepler has been used as a workflow 
system within over 20 diverse projects and multiple 
disciplines. Within the Kepler community, we have 
identified various requirements for scientific 
workflows related to distributed execution (Table 1). 

 
2.3. Related Work 
 

Several scientific workflow systems support 
distributed execution. Triana [2] provides two kinds of 
distributed execution topologies: parallel computation 
for a single task and pipelined connectivity with direct 
data transfer between different tasks. Pegasus [3] 
supports resource allocation and data provenance 
mechanisms in Grid-based distributed environments. 
ASKALON [7] contains a service repository for 
service broker and data repository for data sharing.  

After evaluating these systems, our high-level 
distributed execution framework focuses on the 
following features: 

• Easy-to-use: the demands on users, especially 
scientists, should be as simple as possible. 

• Comprehensive: satisfies all the requirements 
in Table 1. 

• Adaptable: works well with different scientific 
workflow specifications and distributed 
environments. 

• Extensible: new processing components can be 
easily added to the framework to meet new 
requirements. 

635



 

• Efficient: minimize the overhead when using 
distributed execution.  

 
3. Conceptual Architecture 
 

In this distributed framework, each computing 
node runs an instance of the workflow execution 
engine and is assigned one or more roles. Workflow 
execution is initiated by a Master node that performs 
overall coordination of an arbitrary number of Slave 
nodes that execute workflow tasks. Additionally, a 
Registration Center and a Provenance Manager broker 
Slave execution capability and data generated during 
workflow execution respectively. 

 
Figure 2. Distributed execution conceptual 

architecture. 
Master: The Master interacts with end users and 

directs workflow execution. The Master calculates the 
proper workflow task schedule and distributes tasks to 
Slaves for execution using the Slave information from 
the Registration Center. In addition, the Master 
retrieves concrete data content from Slaves using data 
register information found from the Provenance 
Manager.  

Slave: Slaves are computing nodes that register 
their execution capability to the Registration Center for 
the Master to query. The Slave also registers 
provenance information at the Provenance Manager for 
the Master to query. (see Section 4) 

Registration Center: The Registration Center 
manages the registered Slave information. Masters can 
query the Registration Center to discover information 
about current available Slaves and their states. 

Provenance Manager: The Provenance Manager is 
used to register and query execution information, e.g., 
task state, and data that was generated during workflow 
execution. Masters can monitor current execution 
status and track the provenance information. 
Provenance information is also useful for failure 
diagnosis and partial workflow re-execution [8]. 

The requirements listed in Section 2.2 are met using 
this framework. Adaptations can be implemented for 

different distributed environments and scientific 
workflow specifications. In actual applications, there 
are usually several Masters, several Slaves, one 
Registration Center, and one Provenance Manager 
within a logical domain. Each node may fill multiple 
roles. 

The main interfaces of each role and the typical 
interaction sequences between them are illustrated by 
sequence diagram in Figure 3. Figure 3 shows the 
usage of a Registration Center and a Provenance 
Manager by different Masters and Slaves for the 
decoupled architecture. 

 
4. Working Mechanisms 
 

The conceptual architecture explained in Section 3 
can be implemented in different ways. In this section, 
we will discuss some important mechanisms that make 
the implementation easy-to-use, comprehensive, 
adaptable, extensible and efficient.  

Decoupling of the Workflow Specification from 
the Execution Model. Through decoupling the 
specification of the workflow from its execution 
model, existing workflow specifications can be reused 
when changing from centralized execution to 
distributed execution. In Kepler [4], the workflow 
specification is loosely coupled with the execution 
model, i.e., Director. The Director specifies the model 
of computation under which the workflow will run and 
the user can easily change execution model by 
replacing the Directors using the graphical user 
interface for designing workflows. We apply this 
principle to distributed computing. Ideally, a user is 
able to distribute workflow execution simply by 
replacing the Director of her existing workflow to the 
corresponding distributed Director. There are 
experimental implementations of new Directors for 
distributed execution, such as a massively parallel 
parameter sweep using dynamic dataflow model [13] 
or automated distributed simulation using synchronous 
dataflow model [9]. More experiments are needed to 
test the fitness and performance of each Director in our 
proposed distributed execution architecture. 

Peer-to-Peer Data Transfer. In order to improve 
data transfer efficiency during distributed execution, 
we employ a pipeline mechanism to realize peer-to-
peer data transfer, which is similar to [2] and [3]. A 
corresponding pipeline is established for each data 
dependency when the workflow is initiated, and will 
transfer from source Slave to destination Slave(s) 
directly. In distributed environments, each pipeline 
needs to have global access, e.g., through a URI or 
local proxy, to establish data connections among 
distributed Slaves. 

636



 

 
Figure 3. Typical interaction sequence during distributed execution of a scientific workflow. 

 
Transparent Implementation. By making 

technologies, such as JINI, Grid Services and Web 
Services, transparent to users, end users with little or 
no computer knowledge can also distribute the 
execution of their workflows. For example, Taylor et 
al. [2] describe support for different infrastructure 
bindings through general interfaces that lets users 
choose which distributed technologies to use. We plan 
to improve this capability by defining technology 
selection rules and detecting the context of real 
situations. In our high-level framework, features for 
transparent distribution, execution and data transfer 
need to be enabled without interacting with users. In 
addition, ease of deployment is critical to adoption.  
Most scientific users in our community have no 
interest or background in setting up distributed 
computing systems on their compute nodes. Our 
proposed solution eliminates the need to set up a 
separate grid-computing system by enabling each node 
running workflow instance to act as an execution 
endpoint in either the Master or Slave role. This 
approach significantly eases the deployment burden 
that typically inhibits the use of grid computing 
frameworks. 

Capability-Based Slave Registration. Detailed 
information (called the Slave Execution Capability) of 
each registered Slave is maintained at the Registration 
Center. Similar to the site catalog in [3], the 
Registration Center stores hardware, software and 
other information on each Slave. This information is 
serialized in XML to make it extensible. The meta 

model for Slave Execution Capability is shown in 
Figure 4. The main components are: TaskSet: describes 
which tasks are registered to be executable on the 
Slave; Database: the domain specific databases stored 
on the Slave; Hardware, RealTimeStatus, Security, and 
Stereotypes, i.e., extension mechanisms, for adding 
new elements. Depending on the characteristics of the 
distributed environment, some elements may be not 
used and new ones may be extended for specific 
requirements. 

 
Figure 4. Slave Execution Capability 

metamodel. 

637



 

Automatic Constraint-Based Task Scheduling. 
To achieve optimal task scheduling from numerous 
possible solutions, the Master needs to match user 
requirements with Slave execution capabilities. 
Besides the basic functional requirements, e.g., the task 
scheduling solution must be able to complete the 
workflow execution, users may have additional non-
functional constraints, such as throughput, and time to 
completion. Therefore a mechanism matching user 
requirements and Slave capabilities need to provide a 
solution that not only meets the functional 
requirements but also the non-functional constraints. 
Many task-scheduling algorithms have been studied in 
Grid-based systems [10], and can be made useful in 
our framework. However, the assumption in [10] that 
each task has an estimated run-time is not applicable in 
the context of our framework as run-times of some 
tasks vary with different input configuration, e.g., Web 
Service actor in Kepler. New algorithms need to be 
proposed to take the task’s input and configuration 
values into account. 

Broker based Provenance Management. Broker-
based provenance management is employed to realize 
the tradeoff between functionality and efficiency of 
distributed provenance. In distributed environments, 
there are two typical ways to store the execution 
information for data provenance: centralized and 
decentralized. It is inefficient to store the data content 
of all distributed nodes in one centralized center 
because data in e-Science may be huge. It is efficient to 
separate data storage in each distributed node locally, 
but this makes it difficult to query and integrate this 
data in the future. For example, a task may be 
distributed from different Masters for different 
executions, and distributed to different Slaves each 
time. It is hard to collect the overall execution 
information of the workflow in this situation. So unlike 
the centralized provenance catalog in [11], our 
framework utilizes a separate Provenance Manager to 
broker the provenance data. The basic information in 
the Provenance Manager consists of the description 
and the endpoint of each data item. After finding the 
needed data endpoint at the Provenance Manager, the 
Master can get data content from the corresponding 
Slaves. In this way, the burden for data transfer is 
reduced compared to the centralized provenance 
system. This also makes it easier to do future 
provenance tracking. 

 
5. Case Study 

 
In this section, we will use a case study which is 

simple yet common in the Kepler community in order 
to apply our distributed framework. Three domain 

scientists collaborate and construct a workflow with 
tasks in their separate sub-domains. Individual tasks of 
the workflow are executable on some of the scientists’ 
personal computers, yet the whole workflow cannot be 
executed on any one computer. This is an example of 
the “Execute Tasks on Remote Nodes” requirement 
from Table 1. The scientists hope to connect their 
computers to execute the workflow and track the 
provenance information for this execution. Yet they are 
not computer professionals and have no experience 
with distributed computing technologies. 

From the users’ perspective, our distributed 
framework is an analysis and modeling tool that 
provides functionalities to support distributed 
execution (such as starting and registering their nodes 
as Slaves). Using the framework, domain scientists can 
design and configure an ad-hoc network of nodes 
where they assign each computer to serve one or more 
of the roles defined in Section 3. From the Master 
node's graphical user interface, they can specify the 
workflow to be distributed and trigger its execution. 
With the Slave information registered at the 
Registration Center, the Master automatically finds a 
proper task scheduling solution and distributes the 
workflow to the Slaves. Tasks are executed at the 
corresponding Slaves in parallel or sequentially based 
on the workflow specification. Data is transferred 
directly from source Slaves to destination Slaves 
according to the data dependency graph. Data 
generated during the execution is registered with the 
Provenance Manager. Any of the scientists can track 
the provenance information from the workflow GUI on 
his or her own computer by finding data registration 
information from the Provenance Manager and then 
retrieving data content directly from the Slave that 
stores the data. An example of the distributed 
framework deployment for this case and the data 
transfer among them is shown in Figure 5. 

 

 
Figure 5. An example of distributed 

execution framework deployment. 
 

6. Conclusion and Future Work 
 

638



 

Distributed workflow execution is a way to achieve 
better performance and efficiency when conducting 
computational experiments. Based on the requirements 
from the Kepler community, we present a high-level 
distributed execution framework and discuss its main 
working mechanisms. We are extending the current 
implementation of distributed computing features in 
Kepler according to the presented framework. 
Although this framework focuses on features for easy-
to-use, comprehensive, adaptable, extensible and 
efficient distributed execution, the biggest focus of our 
work is on usability of the platform in terms of 
adoption in our community. It builds upon the existing 
work and solutions for some of the desired features 
including error handling, scheduling algorithms and 
minimizing overhead. 

The paper is the first description of our discussions 
and design on the subject and serves as a reference for 
future work. We will refine the design details for key 
factors, e.g., task scheduling optimization and 
techniques for implementation transparency. The 
implementation in Kepler based on this initial design 
and evaluation of design decisions is on-going work. 
 
7. Acknowledgements 
 

The authors would like to thank the rest of the 
Kepler team for their collaboration, especially to the 
Kepler/CORE distributed execution interest group for 
the discussion on requirements for a distributed 
execution framework, This work was supported by 
NSF SDCI Award OCI-0722079 for Kepler/CORE, 
NSF ITR Award No. 0225676 for SEEK and NSF 
CEO:P Award No. DBI 0619060 for REAP. 
 
8. References 
 
[1] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. 

Greenwood, T. Carver and K. Glover, M.R. Pocock, A. 
Wipat, and P. Li. Taverna: a tool for the composition 
and enactment of bioinformatics workflows. 
Bioinformatics, 20(17), pp. 3045-3054, Oxford 
University Press, London, UK, 2004. 

[2] I. Taylor, M. Shields, I. Wang, and A. Harrison. The 
Triana Workflow Environment: Architecture and 
Applications. In I. Taylor, E. Deelman, D. Gannon, and 
M. Shields, editors, Workflows for e-Science, pp. 320-
339. Springer, New York, Secaucus, NJ, USA, 2007. 

[3] E. Deelman, G. Mehta, G. Singh, M. Su, and K. Vahi. 
Pegasus: Mapping Large-Scale Workflows to 
Distributed Resources. In I. Taylor, E. Deelman, D. 
Gannon, and M. Shields, editors, Workflows for e-
Science, pp 376-394. Springer, New York, Secaucus, 
NJ, USA, 2007. 

[4] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. 
Jaeger, M. Jones, E. Lee, J. Tao, Y. Zhao. Scientific 

workflow management and the Kepler system. 
Concurrency and Computation: Practice and 
Experience, 18 (10), pp. 1039-1065. 2005. 

[5] J. Yu and R. Buyya. A Taxonomy of Workflow 
Management Systems for Grid Computing. Journal of 
Grid Computing, 2006 (3), pp.171-200. 

[6] S. Davidson, S. Cohen-Boulakia, A. Eyal, B. 
Ludäscher, T. McPhillips, S. Bowers, M. Anand and J. 
Freire. Provenance in scientific workflow systems. 
IEEE Data Engineering Bulletin, 30(4), pp. 44-50, 
2007. 

[7] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. 
Seragiotto, Jr, and H. Truong. ASKALON: a tool set 
for cluster and Grid computing. Concurrency and 
Computation: Practice and Experience, 17(2-4), pp. 
143-169, Wiley InterScience, 2005. 

[8] D. Crawl and I. Altintas. A Provenance-Based Fault 
Tolerance Mechanism for Scientific Workflows. In 
proceedings of 2nd Intl’ Provenance and Annotation 
Workshop (IPAW 2008). June, 2008. 

[9] D. Cuadrado. Automated Distribution Simulation in 
Ptolemy II. PhD thesis, Aalborg University, April, 
2008. Available at 
http://chess.eecs.berkeley.edu/pubs/412.html. 

[10] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. 
Mandal and K. Kennedy. Task Scheduling Strategies 
for Workflow-based Applications in Grids. IEEE 
International Symposium on Cluster Computing and 
Grid (CCGrid), 2005. pp. 759- 767, Vol. 2. 

[11] E. Deelman, Y. Gil, Managing Large-Scale Scientific 
Workflows in Distributed Environments: Experiences 
and Challenges, e-science, pp.144-149, Second IEEE 
International Conference on e-Science and Grid 
Computing (e-Science'06), 2006. 

[12] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von 
Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun, M. 
Wilde. Swift: Fast, Reliable, Loosely Coupled Parallel 
Computation. 2007 IEEE Congress on Services 
(Services 2007), July 2007, pp. 199-206. 

[13] D. Abramson, C. Enticott and I. Altinas. Nimrod/K: 
Towards Massively Parallel Dynamic Grid Workflows. 
To appear in Supercomputing 2008 (SC2008). 

[14] C. Brooks, E.A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, 
H. Zheng (eds.), Chapter 7: MoML, Heterogeneous 
Concurrent Modeling and Design in Java (Volume 1: 
Introduction to Ptolemy II), EECS Department, 
University of California, Berkeley, UCB/EECS-2008-
28, April 1, 2008. 

[15] Scufl Language, Taverna 1.7.1 Manual, 
http://www.mygrid.org.uk/usermanual1.7/. 

[16] Virtual Data Language Reference Manual, 
http://www.ci.uchicago.edu/swift/guides/languagespec-
0.6.php. 

639




